
March 1976

QLISP: A LAGUAGE FOR THE INTERACTIVE DEVELOPMENT OF COMPLEX SYSTEMS

Earl D. Sacerdoti
Richard E. Fikes

Rene Reboh
Daniel Sagalowicz

Richard J. Waldinger
B. Michael Wilber

Artificial Intelligence Center
Stanford Research Inst i tute

Technical Note 120

SRI Projects 8721 , 3805 , and 4763

The work reported herein was supported by the Advanced Research Projects
Agency of the Department of Defense under Contracts DAHC04-75-C-0005 and
DAAG29-76-C-0012. Additional support was provided by the National
Aeronautics and Space Administration under Contract NASW-2086.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1976 2. REPORT TYPE

3. DATES COVERED
 00-03-1976 to 00-03-1976

4. TITLE AND SUBTITLE
QLISP: A Language for the Interactive Development of Complex Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Artificial Intelligence Center,SRI International,333 Ravenswood
Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRAC T

This paper presents a functional overview of the features and
capabill! les of QLISP, one of the newest of the current oeneration
verY . hiqt1 level languages developed for use in artificial
i n tel 11 g e nee (AI) research

Q(, ISP 1 S both programming language and interactive
programming environment. It embeds an extended version 9f QA4, an
earlier AT lAnguaqe, in INTERLISP, a widelY available version of LISP
with a variety of sophisticated programming aids.

The lanquaoe features provided by QLISP include variety otuseful data types, an assoclativ data base for the storag andretrieval of xpressions, the ability to associate prop rty lists
with arbitrarY excressions, powerful pattern matcher based on a
unification alqoritnm, pattern-directed function invocation, " teams"
of pattPrn inVoked functions, a soPhisticated mechanism for breaking

dat.a base into contexts, generators for associative data retrieval,
and easy extensibility.

System features aVailable In QLTSP include very smooth
interaction with the \JnderlYinq INTERLISP lanquaae, a facility for
agqreoat1na multirle pattern matches, and features for interactive
control of proara

A number of the in1plemented applications Of QLISP are brieflY
discussed, and some directions for future develOpment are presented.

tiW'
I r

I NTPDDUCTION

AD important byproduct of research In artificial intelligence

(AI) has been the development of programming languages that permit
qlvina instructions at a very high level to a computer. A second

important byproduct has been the development of hiqhly sophisticated,

stipDortive interactive programming environments. Tools of this kind

very important for develoPing AI programs , which tend to b
large, complex, and subject to frequent alteration. believe that,
as the needs of the computing community grow, and the computation
s p e d 0 f h a r d war e imp r 0 v e s , the pro g ram m i n g too is that have been a
n e c e s s i. t y t 0 A I w i 11 0 e com e lm po r tan t toolS 0 f general a

p p

Ii cab ill t Y .

This paper presents a functional overview of the capabilities
and features of QLISP, one of the newest of the current Qeneratlon

VerY hiah leVel A I anquage s that includes MICROPLANNER (1),
SAIL (2), CONNIVER (3J, POPLEP (4), and others. Thus, it will serve
both to introduce the lanquaqe to the computing community and to

briefly review t e features available in the new generation of AI
1 a 11 q aoe s . more extensive treatment of QLISP is available
elseWhere (5).

QLISP 1s both programming language and interact! ve

prOQram inq environment. It qrew out of the QA4 lanquage (6) that
was developed at SRI from 1969 to 1972. Many of the basic concepts
of the language are derived trom the QA4 work. QLISP embeds an

. -

ext e" rl p rl V e r s ion 0 f Q A 4 1 n I N 'f E R LIS P 7), a wl del y a v a 11 a b 1 e ve r s 1 on

of LISP witt' variety Of SOPhisticated programming aids.

addition, it orovldes manY new features not present in other
languaaes.

In the fOllowing section, we will describe the language features
of ULISP, with special emPhasis on those not available 1n other

lanquaaes. (Bobrow and Raphael (8) giVe a comparative description

a n u m be r 0 f the s 1 an 9 u age s . Then we shall describe the programming

environm nt provided by QLISP and the underlY1nq INTERLISP. FinallY,
we s h a 11 q i ve 5 0 m e x am p 1 0 f the way s in w hie h t he 1 an 9 u a qe has

b e en use d to rea te e om p 1 e x s 0 f t war e s Y s t ems .

I I LA NGUAGF: F"f: TURFS

This section will discuss the more notable features of the QLISP
lanQu-3Qe. Most of these are derived from features present In QA4.
Some ar derived from other languages. Most have been extended

greater ease of use, compatibility with the underlying INTERLISP
lanauaqe, or increaSed generality.

Da ta Tyoe s

OLISP provides a very rich set of data types and facilities
for manlpulatinq them. In addition to the range of types provided by
INT R(, JSP (lncludinq numbers, arrays, strings, and list and binary
tree structures), GLISP provides data of type tUPle, vector, bag, and

class.

A tUPle is similar to a LISP list, but can be accessed via

associative retrieval as described in Section I1-B below. A vector

1 s 1 i k e t l. pIe, " ut i s t rea t e s 0 f\ e w hat d 1 f fer en t 1 Y hen e val u ate d

b a g is a m U 1 tis e t , an unordered co 11 e c t ion of elements
that may be duplicated. For example, (BAG A A B C) is equivalent to
(BA G B A) but 1 5 d 1 f fer en t fro m (B A G C) . BagS are

particularlY useful for describing the argument lists associativ.
commutative relations. For example, if we defined the relation PLUS
to take a baa as its araUment, then the expressionS (PLUS A A B C)
and (PLUS A e A) (which would both be stored internallY as (PLUS

(BAG A A

)))

WOU) rl be equivalent by definition.

class is an unordered collection Of elements, without

dupljcation. for example, (CLASS A A B C) IS aqu!valent to (CLASS C
B A).

Assocj at j ve Data Base

Expressions composed of any of the data types mentioned
above may be placed in a data base. The data base Is designed for

ass..Q i..a.t.i1la LaJL.aJLa , the fetching of data by content rather than by

name or address. A request for' an item of data may specify values
for any of its constituent elements, leaving the rest to be matched
bY thp values in the retrieved item. The data base is maintained in

the form of a discrirolnation net, a tree-like structure in which the

nod e s r e pre s en t ' t est 5 t a P plY t 0 an ex pre s s iOn, and the bra n C h

represe t he Val UeS returned bY the tests. In general, these tests
are set up to find the first difference, scanning left to right,
between two expressions.

Canon i RepreSent at ion 0 f Exp reS s ion 5

By storinq all data In a common discrimination net, QLISP
can represent eOliivalent expressions uniquely, In the QLISP net,
onlY ne instance of an express ion may occur. Before an expression
1 s ent e r p rl i n to t he t, i t is t rans f armed into a canonical form.

new datum i) 1 not be created if the expression already occurs in the
net. Thus, continuina our example about the PLUS relation, (PLUS A A

B C) and (PLUS A C H A) are not anI y equ! valent: they are exact lY the
same pointer into the data base,

Property Lists

Artitrarv expressions are represented uniquelY In QLISP,
ust as atoms are represented uniquelY in LISP. Therefore it

posSible to assiqn properties to QLISP expressions in the same way

LISP ato!'s. For instance, we may execute the command

((.)

PUT (r L US A B (M 1 NUS A)) S IMP L I FIE ST 0 B),

which will put t e value B under the indicator SIMPLIFIESTO In the
property list tr\e express Ion (PLUS M I NUS A)) . If thi

expression, or any equivalent expression (SUch as (PLUS 8 (MINUS A)

A)), 1s ever encountered ag ln, we can look on its property list and

find a simpljficat10n tor it.

One pc?rtic .11ar indicator the property lists
pressions Is used to represent truth value. When this indicator,

MOD E L v A L U E, has a val u T, the S y s t em in t e r pre t s t hat ex pre s s Ion
"trIJe. SimilarlY, value of NIL represents " f a 1 s e

expression. Special statements exist for maniPulating this
particular oropertv. for example, the statement

(ASSERT (AT SRI MENLO-PARK))

0 U 1 d s imp 1 PIa c e the a t t rib ute - val u e air (MODE L V A L U E T) 0 n th e

property list of the tuple (AT SRI MENLO-PARK). * The semantics of the
statement is that S8l is In Menlo Park. Similarly, the statement

(IS (AT THING MENLO-PARK))

would c,:=)1JS? a search of the data ase for something that was known
(i. W ':1 5 in the rlata base with MODELVALU8 equal to T) to be in
Menlo Park.

t; -i-J . The Un i tic a t i 0 n P a t t n Matcher

An importAnt activity In AI prOgrams is the construction,
mo d i f i a t ion , and a n a 1 y s i S 0 f com pIe x s y m b 0 1 ic e x pre s s ion s . The m 0 S t

power f u 1 tool for t his i s a p.a.J:a miU , a r' dIg 0 r 1 t h m t hat a 110 W $

one f'xDrpssion be used temolate to break up another
e x pre s 5 i (I!' i n to e 0 fTl r 0 n e n t 5 . QLlSP extends this facility bY providing

a UQ

~~~ ~~~

pattern matcher 1n Which eaCh of two expreSSionS may
act as templates for th other.

S 0 m e- x a rn pI€' s t h i pol n t are pro p r ate . The QLISP

statem nt MATCHQQ invoKes the cattern matcher direct 1 V. The

statement
( "'1 A l' C H Q ( (8 Y ) (A 8))

---.._--

* This DaOer will avoid almost all
QLISP.scec1flc syntax. It sUfficesthe elempnts of expressions are
identified as variable by the
indicatps that the varlahlp is toprefix indicates the previous lue

need for the reader to cope wi 
to say that 1n QLISP statements,
presumed to be constants unl
prefix or 

$. 

The c: prefix
be . assigned new value: the 
of the variable.



Will mateo X to A and Y to B. The statement

(MATCHQQ ( X) (A B1)

will fail, since X cannot be hound simultaneoUSlY to A and The

tat em en 

(MATCHQ( (A ..X) (+Y B))

will tch to 8 and Y to The statement

( f\ t.. TC H (J (A (8 ..X) .. 

y) (. 

X .. Z ( A (B C))))

will match X to A, y to (A (8 C)), and Z to (8 A).

The U L 1 Sf.' pat te r matcher is based extended

unificntjon alooritr, rr that can deal with the variet.y of data types

available in tne l nauaqe. The matcher is not c6mplete tor complex

expressionS ontainina baaS and classes. However, it is adequate 

the kjr)rJs of expressions that are almost always used. Pattern

mat c h 1 n (l i 5 uSe d t n Q L J S P for s eve r al e en t r al P U r P 0 s e s . It Is used
to b i n va r 1 ab 1 e s and decompos expre s 5.1 ons, as we have ment loned.

It used t.o control associative retrieval. It 13 also used to

invoke functions for specified purposeS, as We will now show.

F . Pattern-Directed FUnction Invocation

ManY 0 f t he Al lanquaqes or QV 1 de a featur e, fIrst pr oposed

by Hewj tt 9), whereby funct ions can be inVoked ot onlY by naminq

them, ut also by checking to see if they are appropriate for a Qlven

arqument. This check 1s performed by matchlnq a pattern associated
with each fUT'ction with the given argument. For example, we might.

wr i some functions such the fOllowing for an algebraic



SimPlifjer:*
PLUSSI NGLF: (GLAMBDA (PLUS .X) $X)

PLUSZ RO : ( IJ L BOA (P L U S 0 4-" X) (' ( P L U S S $ X ) ) )

P L U S M1 N ! J S 

( (

L A 1 B D A (P L us .. X Cll1 I NUS 4- X) .. 4f 'i) (" ( P L U S $ $ Y ) ) )

The F' IJ LJ S S J N G L t fUn c t ion say s: g ve n a". a r q men t 0 f the for m

PLUS followed by ny sinale element, return that single elempnt. The

PLUSZERn function says: qive an argument of the form PLUS followed
by any ber of plements, One Of which Is 0, return the form PLUS
fOllowp by all the other elements of the arqument.

At the user s oPtion, if a function s Pattern can match an
arqument in more than one way, all possible matches may be attempted
in turn. When one match leads to a failure, an alternative match is
attemPted. The function itself will not fail until all Possible
matches have been tried. For example, the following program will
find two friends of JOE Who are father and Son:

(QLAMBDA (FRJFNns JOE (CLASS +F "5 ..REST))

(IS (FATHER 55 SF))

RAe fe.. T HAC K )

The proaram will cYcle through all pairs of elements from

the CIa 5 S 0 f J 0 f ' S f r i e rl d s an d 5 e e i f 0 n e 1 s the fat her 0 f the 0 the r .

-----..

* The doubled prefixes (e.

g. 

$$) indicate that the variable refersto a fr arnP'T)t of tt".e expresSion containing it father than a Slngle
element. The quote mark (' ) indicates that the following expression
is to be instantiated (following the semantics of QLISP) rather than
evaluated foll0winq the semantics of LISP).



Teams of Funct ions

FUnctlcns to be jnvoked by pattern are tYPically intended

for app) icatlon toward a specified Durpose. Some functions are to be
used for conseauent reasoni.nq: when a particular consequence or goal
(characterized by thP. function s pattern) is desired, invoke this
fUnction to achieve it. Some tunct ions are to be Used for antecedent

reaSonjna: when a particular antecedent condition (e.

g. 

an assertion
in the d a t .a bas 

€' )

h a r act er 1 zed by the f un c t lon pat t ern 0 c cur s ,

invoke this fUnct1 n to cause further effects on the data baSe.

Typic 11Y in lanqauoes that use pattern-directed function
invocation, many of the consequent fUnctions are tried when a goal 
to be ac ieveri, and all the ntecedent functions are tried when the

d a t a has e 1 s up rl ate d 0 n 1 y t r\ e 0 Ii es t hat h a Ve a pat t ern th a t mat c h. e s

the coal or assertion j 11 actually be invoked, but a great deal of
overhea0 must be expended to attempt to match the patterns of all
fUnctions.

his p r act ice 1 s in e f f i C' i en t sin c man y f U nc t Ion s may

alreadY be known to be inappropriate, and yet their patterns lll all

be checKPd" QLISP provides feature wherebY, with each of many
kindS of statements that can invoke functions by pattern, a so-called

am 0 f fun c t Ion s ea n be s p e C' 1. fie d f r om hie h aD P 1i cab 1 e one a y 

drawn" So, our simplification example, we could cause one
simPlification to occur with statement that calls for consequent
reasoni'lq:

( CAS f: S (P L LJ S ( M r NUS A J ) )

APPLY (PLUSSINGLE PLUS ZERO PLUSMINUS 

... )) 



The list after the keyword APPLY Is the team of functions
associated with the particular CASES statement. The system will
attempt to match the catterns of onlY these functions with the
par tic u 1 a r P L US e x pre s s i on .

ilarlY, tea of functions may be specified with any

ASSERT, DFNY, DE LFTE, or QPUT statement to perform ntecedent-type
activities. For example, 1n comPuter system mode 11 inq the

operation of a library, a team of functl'ons might be associated with

assertions that m0dp) led a book being checked oUt. These functions

miqht assert that the book was due three weeks from the current date,

up d ate A co un t 0 f boo k s in C 1 r cui at j 60 , or even cause the oriqi-nal

assertIon to fail and appropriate other action to be modelled if the
per SOh checkino out the book had overdue books outstandinq. This

activitv coulrl e Jnjt1ated by a OLTSP statemept of the form:

(ASSERT (CHFCKEDOUT (The OdysseY) James. Joyce (4 JAN 1918))

APPLY $LIBRARYFNS)

Where $118RARYFNS was bound to the list of relevant antecedent
fUnctions.

Con t ex t s

Thp previous discussion has presumed that all expressions
were stoTPd in a slnqle, monolithic data base. In fact, the data

base is f ac t orpd in to di f f erent segment s, ca lIed QALa S. Contexts'

may be thouaht of as corresPonding to the block structure of ALGOL
like lanquaqes. Whenever a QLAMBDA function or a user-defined block



1 s en t ere d, the cur r en t COn t ext i s se t to b de sc en dent 0 f the

pre v! ous context. Variable bindinos and assignment of properties
( 1 n c 1 U din Q tn D 

art 1 cUI a r , t rut h val u e s) to e x pre s s ion s t hat are

local to a context are perceivable only from that context or some
de sc e n den t . T I) us, con t ex t S fI a y be reg a r de d as Par t 1 c u 1 a r vie wp 0 1 n t s

of the data base.

In addition to a default structurinq Of contexts based on
the structure of the flow of program control, QLISP provides
facilities for manipulating contexts explicitlY. For example, to

proVe a proPosition of the form:

(P or Q) implies 

one Coulrl set up two parallel contexts with P true in one and Q true

in the nther, and try to prove In both contexts, as suggested in

F i qu r e 1

CURRENT
CONTEXT

DESCENDENT DESCENDENTCONTEXT CONTEXT
(ASSE RT P) (ASSE RT 
(GOAL R) (GOAL 

T A-740522- 1 08

FIGURE USING CONTEXTS TO PHOVE A DISJUNCTION

Contexts are actuallY constructed from more elementary

en tit i e s, 

\' 

hie h w e s tl a 11 call c:.Q t.a.Q. , f or want of a be t t e r t e r m .



ContaQS, ich are similar to the " situation tags" of PLASMA (101,

corresponrl to particular pOints in time in the evaluation of a
proqra (tvn1calJ'l h.n QLAMBOAs or blockS are ent red). A context

Is an ordpled list .of contags, tYPicallY correSPondlnq to the stack
nctjve function and block invocat ions. For users with

sophist ic ted needs for data base manipulation, we have provided a

set of QLISP statements that permit the to construct their own

cOntext 5, vlewnoints of the data base, from the underlying
contaas. Thpse statements allow the creation of a context that Is a
descendent of a number of independent contexts, a context that 1s the

sub set 0 f a a i v en con t ext not r e t r 1 e v a b 1 fro m s e con d con t ext, and

cOT'text that reviseS given context to aPP ar as if it were a
descen nt of another arbitrary context.

Generators

The da re t r 1. eVa 1 statements of QL I SP are deS igned to find

a sinGle i stance of given pattern. To cause the pattern matcher

to continue its atch and obtain other such instances, a l1Ser

prOgr am mu s t r e t u rr t t he query tat ement ia the backtracking
mechanism (i. e. hY failing).

To allow more natural and inexpensive method of

r e t r i ev i ra m u 1 t 1 p J e 1 n s tan c e S 0 f att ern , we have ex t en de d the

CONN! VFR (3 J aporoach of us lng .ts.. For examPle, the 
statem nt that was introduced in section II-C specifies the fetrieval
of one instance of a given pattern. There 1s a generator version of



the IS statement called GEN:IS that finds multiple tru instances of
a oiven pattern. Each time a statement such as GEN: IS Is called, it
produces numb Of instances matching the pattern. These

e xp res s j 0 n s are put on " po s sib i II tie s 11 s t" a Ion g wit h a " t a q" t hat

indicates how the qenerator Can be restarted when more instances are

que 5 t ed, an rl t his po S sib i 11 tie s 1 i s t is r e t urn e d by t he era tor

as its value.

If the fUnction TRY:NEXT is called with a possibilities
list d5 an arqument, it will remove the first instance from the list
and return tt as its value. If the list contains no more instances,

the t a 0 j s use d to r est art t he gener a tor . Sin c e call t 0 TRY : NEXT

can m210e from anywhere in program, this form of generator
separates the retrieVal of data elements from the processing that 
done on them in a way that is not possible 1n a strict backtraek1ng
regiJTen.

Trie q e n era tor r e t r i e val tat e men t s are 1 m p 1 em e nt e d us in g

INTERI,ISP FUNARGs. A FUNARG a data object that conceptually
repr€'$ent s a COpy ot a tunct ion together with t at COpy's private

data enVironment.

Extensibility

QLISP statements that are not cart of the underlying
I NT E R L IS P Ia 9 u a q e ar e processed by the I N T E R LIS P error ' h and I in g

mechanisJT, will be explained below Use r - 0 r 1 en t e d t 00 1 S for

acceSSjnq the LISP translation mechanism are provided so that new

1 2



LIS P - 1 i k e st atempnt s c be de fin e d ea s 11 y . Once the statements
have be p r de fin ed, t hey are treated h Y the interpreter and compiler

exact.1Y 11ke ot r,er QLISP statements. TYPically, the extension

facility has been use d t 0 provide alternative control structures for
invoki q the standard QLISP statements, or to provide special syntax
for USer.def1ned QLAMHDA fUnctions.

III SYSTfM FEATURES
(JL J S P 1 s mor than just a progra minq language: it Is an

interactj Ve oroaramm iog enVironment for the development of very

complex collections of softw re. In this section we shall discuss
the maior features ot thiS environment that are unique to QLISP.

Intearatlon With INTERLISP

The major advantaae of QLrSp as programming environment 

a S co m 0 are d w 1 th the r A J lanquageS, is its ease of USe. It IS

easier to edit funct: ions, c r eat e s y m b 0 11 c f 11 e s , trace ex cut Ion

paths, break into computation P&thS, and debug proqrams in QLISP.

ThiS js prImarily dup to the cho ce of INTERLISP as the host language

for QLISP, and the care that has been taken in the implementation of

QLISP to preSerVe the manY supportive featureS of INTEPLISP.

QLISP is implemented throuqh the error handling mechanlsro

of INTE P.LISP. A valid LISP expression will never be seen by the

QLISP processor. Thus programs or portions Of programs that use

onlY LISP constructs will run as fast 1n QLISP as 1n INTERLISP.



the TERLJSP interpreter encounters an ill-formed
LIS P e x pre s s ion, j, t ea 11 s an err 0 r r 0 uti ne t hat i n t urn 1 n v 0 k e s 
error nal yzer. I f the expresSion is recognized as a valid QLISP
form, it is translated to an equivalent LISP form that Is returned ,
the 1 n tp r pre t e r for € val u a t ion . The translation 1s stored with the
oriainal expr ssjon so that the translation need be done onlY once.

similar mechanism causes QLISP code to be translated into

equivaJent LISP COde when it occurs within a function being compiled.
Since the tra slation occurs at compilation time, the QLISP

interpreter need never e invoked at all when running compiled QLISP

code.

!: .

Aqareaat ion of Pattern Matches

The apPly mpchaoism provides good meanS of

reduci the nUlTber of unneeded pattern matches during pattern-

directed function jnvocation. However, there may still be lot of

wasted effort dS the function invocation mechanism attempts to match

each pattern turo the a. rqument For example, the

simplification functio s described in Section II-F all begin with

PLUS. TheY m i (J tyt eVen be 5 e qr e a ate d in t 0 a sp e c 1 fie tea m of

fUnctions to simplifY expressions begtnlng with PLUS. And vet every

pattern will be atched aqa1nst the argument, and the matcher will

succeed as l ast 05 fAr as matching up the PLUS'

An ortj n is available to allow the patterns of QLAMBDAs 

be aqqreaated toqpther in a tree structure. or example, the tree



for the simplification functionS listed In Section II-F appears In

Fiqure A sinGle operation against the tree Can determine the set

of all the QLAMHDA functions that are good candidates to successfully

match a qj. ven araurnent. (The tests that are applied are cruder than
tho se a p p 1 i e by the pat t ern ' mat c her Its elf, so t hat the set 0 
fUnctions may contain some whose patternS will not actuallY match
when the matcher is invoked. Thi s set can tnen be intersected with
the partjcular " aoPly team" to determine which fUnctions to inVoke.

1st ELEMENT
I ,I '

2nd ELEMENT

1st ELEMENT OF BAG

I '

2nd ELEMENT OF BAG
PLUSZERO

PLUSMINUS PLUSSINGLE

TA-740522-109

FIGURE 2 PATTERN SELECTION TREE FOR
SIMPLIFICATION FUNCTIONS

treE' structure used for this qqregdtlon is actuallY

the iiscrimjnatio net of the associative data base. for " apply



teams" at 0 fE' t r\ a n b 0 lJ t fifteen functionS, this feature provides
Siqnjflcant effici ncies.

(' .

Interactive Program Cortrol

Sin C e the Q 1) 1 S P ea C k t r a c kin q me c h ani s 1 s imp le men t e d us 1 n g

INT RLTSP' . prror facility, tnere a number Of ways In which the

stand' I i.j T F P LIS 

: j 

n t € r act i v faCilities Will not work properlY.

For exa,inJe, the I r: T e, R td S P fun c t 10 n t r a c 1 n g fa c i 1i t y i s imp 1 em e n t e d

" b r k the C 0 rr rut a t ion, the n p r i "I t, the n Con tIn U e . But INTERI.JISP

errors, iiihJ.Ch are ( enerated by QLISP to cause backtrackinq, are
trapPed F) t hreak The Solution we adopted to this particular
q u an d a r V was to imp 1 em en t Q T R ArE fa c i 11 t Y t hat did not q e n e r ate a

break When i t Pf1.IIted information about function invocation.
Similar care was taken lth breaks in computation, the packaae for

man i P lJ 1 a t i.. n (J S Y IT h (" 1 j c f i. 1 e 5 , And manY other system components to

a 11 ow 0 LIS P us e r .t 0 bel i eve t hat t he tot a 1 s y s t em was be n a vi n g

e x act J V as t. he ll n -j e r 1 y t !J g : T E R LIS P N 0 111 d .

A p P LIe AT I (H) S

p f 0 vii e son' e ) e r s p eo c t i ve 0 n t!i e uti 1 i t Y 0 f LIS P , we will

brieflY deScrihe somf' ot the aOPllcatlons implemented with it. The

common 3racterj t ics of tnese PDllcat1ons are that the proqrams

and thp. conc Pts underlvinq tr1em could not he specified Wit out a

sustaineri cycle of:
1) Troqr-3mmi"' thp test current ideas bout what the program

snO\Jlrl De doiTO,

1. 6



2) obserVjnq t(le proqram' s beh-3vior, and then

3) modifyinq or extendinq the ideas.

A . Proqram Vpritication

The first major QLISP program was the proqram verifier 
WaldinOPT and Levitt (11 J. The verifier was originally written 
QA4. T t1e DrnQra includes over 100 functions each encapsulating a

pee i J 1 zed pie ce o f now 1 e d 9 e a b 0 U t t he s em ant i c S 0 f t he 1 an g ua 9 e 0 f
the pro 0 r he f v e r 1 fie 

. '

f h e LIS P ve r s ion ran a b 0 u t 30 t 1 m e s

faster than the oriQinal QA4 proqram.

Automat ie Proqra mlnq

SUbSeQl.pn t work by Waldinger has Used QLISP for the

generation of simple Pfoqrams from output specifications Thi s work

makes s t r 0 n q use of t t! e un t f cat i on feature 0 f the pattern matcher 

combJ ne the Icnowlerlqe that 1s distributed var ious QLAMBDA

functlons. for eK , one function may say, in effect, to produce

a list with some X as its CAP, perform (CONS X Somethlna), where the

Somethino ts lJnsDec1ftE'd. SimilarlY, another ction may say, to

produce a list with some X . its CDR, perform (CUNS something X),

where th somethina is again unspecified. Therefore, if the system

were a1ven the qoal ot produci g a list with A as its CAP and B as

its CDH, the first function would return (CONS something), the

second II. Quld return (CONS somethinq B), and bY unifying these
results, the systen cOUld pro1uce the correct code (CONS A B).

1 7



General Problem Solvinq

syste1 rlevelope by Sacer otl (12) aenerates comPlex

plans, monitors tnejr execution, and recovers from unexpected events

that cause the execut ion to deviate fro the expected course of

action. This is aroe svste (about 60 pages of code) and almost
all Of It is in the underlYing INTERLISP lanquaqe. However, the

patter matchin d context mechanisms of QLISP are central to its
OPeratIon, anri tre ease wit.h hie n th e re n res en t 8 t 10 n 0 f k now 1 e dg e

could be chanQed as important in the system s development.

The se nt ics of the actions that the system plans for are

written in a languaGe extenston of QLISP that has QLISp. s semantics
but is evaluate very differentlY. Strano USe of the pattern matcher

and 0 f the extension feature allowed the action language to 
readi ly chanaed as the scope of the program increased.

Deductive Retrieval

A deductive retrieval pacKage was written by Fikes (13) to
alloW R r h it r a r y deduct ions t a be f i red 0 tf bY LIS P -11 k e que r V . 

add i t Ion to 5 i \ P ) y ea u sin q ass 0 cia t 1 v re t r i e val fro m the d a ta b a S 

F 1 k () S - I He r i e 5 can c a use ' the t n v 0 cat ion 0 f ar b .1 t r a r pro g ram s t 

de due e t he an s e r to t n que r y f r om the r a va i lab 1 e in for at 1 on .

These aupry statpmpnts, implemented as a languaqe extension of QLISP,

mak s t r onq us o t the qenerator facility. capabilities for

modellina state chanaes, also part of this Packaqe, maKe strong use
of the ability to associate an arbitrary property list with an
expres s i on.

1 B



. .

Duter Aiied DeslQn

The fir t Q e n p r al p ur DOS e program for computer aId e e s i g n

that us e 5 A I tee h rd. que s in a sUbstantial way has recently been
completpd. It works qenerating a model of the object to
de s i g in s t aq e s 0 f In ere as in q de tall. As e a c h tag e i s gene rated ,

a p pro p ria t e use r - 5 up P 1 i e d de s i q n c on s t r a in t s are a p p 1 i e d . The sy s t em

employs sophisticaterl backtrackina techniques to minimize the search
for a ob1ert rhat satisfies all the constraints. The proqram in its
currellt form f14J 1 5 written completelY TNTERLISP. The

developmpnt of the rrogram was carried out in QLISP, and the code was

graduallY cut over to pure INTERLISP as desiqn ideas jelled and
execut j on speed beca e important. The pure IN fERLISP version runs

about tfn times ster than thi? original QLISP version. The

development of the system was areatlv facilitated by the early use of

QLISP and r p s ul tin q a b i 1 i t V to easily change internal

representations and control strategies.

Fconometr ic Mode 111nQ

fr 5vste has been developed that integrates a quantitative

computer mode 1 wit an over lay of he u r i s tIc 1 U d gem e n tal r u 1 e s (1 5) .

The heuristic overlay is intended to facilitate interactive use of

the econo etric mo bY makinq it easy to alter parameters and
adiust boundary conditions. The underly1nQ quantitative model was
implemented in mi. x t \1 r of TERLISP and fORTRAN The heuristic

mOdel was implemented in QLISP as an ASSERT team, a set of functions



applied after an assertion has been ade in the model. The user

interface WnS imDJ ment d in QLISP because of the ease of interaction

it prnv1.des.

r u P P t. rJ'' S TAT ( 1 S

LlSP has been in active use at SRI for nearly two years. The

version at SRI is implemented in INTERLISP on a POP-10 computer using

tne X orerat i Sys tem. It is available for use over the ARPAnet
by other us p r s t h p n e t\l 0 r

: .

vers10n r,f OLTSP is also available for INTERLISP-370, a

ve r s ion of I i'i T t" K tIS 

\- 

t h r LJ n s on 1 R 1,1 3" 0 a 0 d .3 70 s e r 1 e s com put e r s .

LTSP i 5 not intende to PeffcrmanCe lanquaqe. The

progr

~~~

1 no tools that it prov i des are of general purpose. Thus a

pro q r a ,. 1,' r i t ten i n 0 L r s p .; 1 11 rUn 5 lOIN 1 Y com par e d t 0 a v e r 5 1. 0 n 0 f the

proqra written in a lanauage tnat provides a more restricted set of
data t v r 0 r 1 e s s fIe x i b Le e 0 n t r 0 1 s t rue t u res. Rut 1 t has bee n 0 u r
experience that, n thp proarams to be written are large, complex,

and SUbiect to frequ nt alteration as development proceeds, then the
inetficipncy in the proara s execution time is more than compensated

for by efficiencies the crogrammer s development time.

FliP THE' R "iIJ 0

VI!hi1 ()J,TSP is a fUl tool for many purposes, further work

Will h r e qui red t 0 a lJ 9 men t t he power 0 f the anquage to r e f 1 e c t the

growlna npeds of Al programminq. The current version provides an

assoCiative rlata base that must be entirely contain within the

proqram s core imaae. Systems that operate on substantial knowledge
bases are a fOCUS of current research interest in AI, and the amount
of data that these systems will use will require that at least part
of the associative data base be res dent on secondary storage. This
Will rpQuire a new data storaqe and retrieval mechanism, since those
of eXistinq AI languages, including QLISP, tend to distribute data
randomlY throughout the store. The distribution of data needs to be
at least oartlal1Y based on semantic criteria, instead of totally on

a svntact Ic hasis a5 is done now

Arother inadequacy of QLISP and other AI languages Is that the

pattern matcher turns too 11 t t Ie i for mat Ion GIven two patterns
III 3 t C 1"1 , it replies eith with an exact matching between the

patterns or with a rePort of failure. It would often be extremelY

useful to h a v e a mea 5 \J re o f how " C 1 0 s e" the mat c h was to sue c e dIn q .

Obviously, t is would be an expensive feature, but this kind of
"fuzzy" matehlnq would provide a user with the powerful ability
beqln to deal with expressions on a mantlc basis.

A third area for further development Is in the aeneral category
of u 1 ti pro c e s sin q While many languages support the use of mUltiple

interderende t crocesses, the level of command that they provide is
tyoicaJ Iy quite low TypicallY tt'd.?Y are on the level nf " start
process,

" "

suspen DroceSs, " and " wait on SemaPhore. It would be
very pf1Jl to have r.iqt)er level corrmands available that wOUld allow

t h u a q s y S ten. j tselt to keeP track of any proceSSeS at many

level ot function calls. SUCh echanis could be easilY tied to

the eXistinrJ "", PPLx team " facility of QLISP.

V I I en ;-1 r L (I S ION S

ave qj vpn a hr iet overview of the capab 111 ties and features

of (JLISP. While it is not practical for use as a production
lanauaop, it is a time-savino tool for use 1n constructing complex
systems that are iect to slaniflcant chang durlnq the courSe of

their dnvelopment.

VIII ACf(NCJWLEDGE 1Et-TS

Thp hasjc features of GLISP are derived from the Q14 language,

deve)cped 3. t SFJ by J e f f R u 11 f son , RIchard Wa ld 1 n q e r , and J a n

Derk"spn. The initial implempntation of QLISP was done by Rene Reboh

and rl Sarefdot SUbsequent velopment was Carried on by Daniel
Saqa low iC'z and Mike 11ber. Rich Fikes developed the generator
pacKacre, atld itl jnstrumental in straightening out the context
mechani!;m. al ewey wrote the pattern matcher, based on a problem
red 1I C t i 0 r a 1 q (' r 1 t h rr 0 f R 1 ch a r d Wa 1 dIn q e r . R i c h a r d wa 1 dIn g e r haS bee

maior force setting the qoals of the quage development.

Warrpn Tpite)man has rovided much help in qenerallz1ng the features
of I 1\ T E R LIS P t hat per nl i t the c lea T' in t e r fa c e to Q LIS P .

REFERENC ES

1 . SUssrran, G. J., and Win.ograd,. T., "MICROPLAf\NER Reference
Ma n lJ aI, ;.f. Ar t. i fie 1 al l n t e 111 g e nee Lab rat 0 r y, Me m 0 No. 2 0 3 ,
JUlY 1970.

VanLehn, K. , ., ed., " SAIL User Manual, " Stanford Artificial
Intell10pnce Laboratory, Memo. AIM-204, JUlY 1973.

McQermott, D. and Sussman, G. J., " The CONNIVER Reference
Manual, fl1IT Artificial Intelliqence Laboratory Memo No. 259, May
1972.

Davies, f).

. \

J. F ., "POPLER 1. 5 Reference Manual, " University
EdinburQh, TPU Revort No. 1, M 1973.

vJ 11 her, p,. t"

., "

L . I S P P, p fer e nee Man u a 1 , " S P I A I Ce n t e r
Technical Note 118, Mar 1976.

R u 1 t f son, J. to., W a 1 :j 1 n q e r, F. ..1., a. n d De r k 5 en, J. A

.,

,. Q A 4: A
Procedural Calculus for Intuitive Reasoninq, " SRI AI Center
Technical Note 73, November 1973.

1 . T e i tel mAn, iN LIE.B..L .se. B.a.fa.,.aQ,c:a ..QJ.J" X e r 0 x Palo A 1 t 0
Resee.rC'h Center, .Uctober 1974.

rOb row , D. G a T' d Hap h a e 1 , B

.,

" N e
TN pro q ram m in g Lan g u a q e s for

A r ti tic i a 1 In t e 11 i 9 e nee, " c.Qm t.J.Q. .su. a.\.., vol. 6 , No.
September 1974.

9. . fiew1. tt,

('., "

Description aDd Theoretical Analysis (Using
SChemata) of DI ANNER: A Lanquage for PTovinq Theorems and
M -3 n j p u 1 a tin a \ 0 d €' 1 s in a R. 0 bot, " M I T Al M em 0 No. 2 5 1, A p r il l 9 7 2 .

to. H ew i t t, C.,

" .

H 0 \ t 0 Use \fJ hat You K now E.I:QCe.

g.

.o.t EQu.tU
1QQa CQQLa Ce Q

~~~~~ ~~~~

ca, P P. 1 89 -19 B 
SfI P t e m b e r 1 9 7 5 .

11. w d 1 in q e r, R . J. , and Lev 1 t t, K . N

., 

" Rea son i n q About Programs,
1I:.tJ.J.c.J.aJ. c.te.J.l1Qe c., Vol. 5, NO. 4, pp 235 - 316 , 1974.

t 2. Sacerdot i, E. D., " A Structure for Plans and Behavior, " SRI AI
C e n t e r Tee D n i c , 0 t e 1 0 9 ,. Au g u s 1 9 7 '5 .

13. Fikes, R

:., 

lI()p 1uct.ive Retrieval Mechanisms for state
Des c rip t i on Mod e IS , 2.LQc:e.aQJQ.Qs, QL E.o..lJ:.t.b t.aJ:Q,a.Q..J.

aQce Q

~~~ ~~~

a, PP. 99-106, September
1975.

14. Lato!Th.e, ...

-('.,

"ArtifIcial Intelligence in Computer-Aided
f' 5 i an: The TKO PIC S y s t err, 2.tg.J: t.s .o.f lE UA.g COAUUAC

CALL S s.1. s., A 1. S t 1 n, T e x as, Fe b. t 976 pro c e e din g s to be
P IJ b 1. ish e d by Nor t h - H 0 11 and un d e r the tit 1 e c.i.D.

15. COles, L . s., "The ApP1ication of Artificial Intelligence t.o
H e l1 r i s tic ;'I 0 d e 11 in q , " 2 c.e.d q.s. .Q:f CQQ ua.J.a. c'cmg.t..t
CQQ ence , P

p.

2 0 0 - 207,

q.

t 9 7 5 .

